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 where 
jc  is 1m , x is 1n . 
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 where ir  is 1n , x is 1n . 
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 A set is an arbitrary collection of object, or elements, without any predefined 

operations between set elements. 

 A binary operation operates on two set elements at a time, yielding a third (not 

necessarily distinct) element. 

 The expression “ a b ” is used to denote that an element a divides an element b 

without remainder. 

Modular arithmetic 

 Addition modulo m (or mod m) is often expressed in the following manner 

 modulo a b c m   

which read “a plus b is equivalent to c modulo m.” The result c is obtained by 

summing a and b using standard integer addition and dividing the result by the 

modulus m; c is the positive remainder. 

 Two integers a and b are said to be in the same equivalence class modulo m if a can 

be written as a = xm + b for some integer x. 

 Addition modulo m groups the infinite set of integers into m distinct equivalence 

classes. 



 Elements in an equivalent class modulo m are “equivalent” in the sense that any 

element in a given class can be substituted for any other element in the same class 

without changing the outcome of a modulo m operation. 

 Equivalence classes of integers are usually labeled with their smallest constituent 

nonnegative integer. 

 Multiplication modulo m is performed over the integers in much the same manner as 

modular addition. The result of the integer multiplication operation is divided by the 

modulus m and the positive remainder retained as the result of the modular operation. 

 If 0 is in the set, we do not have a group under modulo m multiplication. (0 has no 

inverse.) 

 A zero divisor is any nonzero number a for which there exists nonzero b such that 

0a b   modulo m. 

 If the modulus m has factors other than 1 in a given set  1,2, , 1m , the set will 

have zero divisors under modulo m multiplication. (Say m x y  , then x y   0 

modulo m.) 

Group, subgroups, cosets 

 A group is a set of objects G on which a binary operation “  ” has been defined. 

" ": G G G    (closure). The operation must also satisfy 

1. Associativity:    a b c a b c      

2. Identity: e G   such that a G   a e e a a     a G   

3. Inverse: a G     a unique element 1a G   such that 1 1a a a a e     . 

 A group is said to be commutative (or abelian) if it also satisfies commutativity: 

,a b G  , a b b a   . 

 The group operation for a commutative group is usually represented using the 

symbol “+”, and the group is sometimes said to be “additive.” 

 Remarks: 

 Identity element e in a group is unique. 

Proof. Let e1 and e2 be identity. Then 
1 2 is an identity  is an identity

1 1 2 2

e e

e e e e   . 

 Inverse a
-1

 of an element a in a group is unique. 

Proof. Let 1v v e  , and 2v v e  . Then,  1 2 1 2 2 2v v v v v v e v v        . 

Also,  1 2 1 2 1 1v v v v v v v e v        . 

 a b c b     a c . (Proof: add –b to the right of both sides) Note that this 

work because b has inverse. 

 a c a b c b     . 

  
1

1b b


   



Proof. For any b G , there exists 1b G   such that 1 1b b b b e     . Let 
1x b . Then, we have b x x b e    . Hence, 1b x  (from 

uniqueness of inverse).  Therefore,  
1

1 1x b b


   . 

 a b   * *a x b x  

Proof. Suppose * *a x b x , then 1 1* * * *a x x b x x  , which implies a = b. 

 The order of a group is defined to be the cardinality of the group. 

 Order of a group alone is not sufficient to completely specify the group unless we 

restrict ourselves to a particular operation. 

 Ex. group 

 The set of integers form an infinite commutative group under integer addition, but 

not under integer multiplication. 

 The set of (n  n) matrices with real elements forms a commutative group under 

matrix addition. 

 The equivalence classes {0, 1, 2, 3, …, m -1} form a commutative group of order 

m under modulo m integer addition for any positive integer m. 

  1,2, , 1S p   forms a commutative group of order (p-1) under modulo p 

multiplication if and only if p is a prime integer. 

 If p is not prime, then there exists m, n  S such that 1 < m, n < p and mn  0 

modulo p; closure is not satisfied.  

 If 0 is included in the set, we still do not have a group because  

 0 does not have a multiplicative inverse. 

 n does not have a multiplicative inverse. Suppose it has, then 

   1 1 0m m n n mn n     . 

 Given an element x  S, the products   1, 2, , 1x x x p     are distinct, 

otherwise x y x z    implies   0x y z   . 

 Since the (p-1) products are distinct, one must equal the multiplicative identity, 

assuring existence of inverses for all x  S. 

 For convenience, define 

 times

m

m

g g g g    . 

 Order of a group element: 

Let g be an element in the group G with group operation “  ” and identity element e. 

The order of g =  ord g  =  min : m

m
m g e


  

 Let S be a subset of the group G. If for all a and b in S, 1c a b   is also in S, then S is 

said to be a subgroup of G. 

 A subset of G is a subgroup if it exhibits closure and contains the necessary 

inverses. 



 A subgroup is itself a group. 

Proof. 1) Associativity follows from the fact that S G . 

2) Need only to show that identity in G is also in S. To do this, let b be 

any element in S, then by definition, we have 1b b S  . But b is also 

in G, hence, 1b b e  . Therefore, e S . 

3) Inverse: Need only to show that inverse in G is also in S. First, we’d 

already proved that e S . Now, b S   we must have 1e b S  . 

0) Closure: Let ,a b S . We already know that 1b S  . Then, 

 
1

1a b a b S


    . 

 A subgroup S is said to be a proper subgroup of G if S G  but S  G. 

 Properties of subgroup 

 e S  

 If a S , then m  ma S . 

Proof.      
1 1

1 1 1 3a S a S a a a a S a a a a S
 

                etc. 

 If ,a b S , then c S   such that c b a   

Proof. Let 1c a b  . By definition of subgroup, c S . 1c b a b b a     . 

 Example: 

 Let a G ,      ord 1 ord2 2, , , , , , ,
a a

e a a a a a a


  is a subgroup of G. 

 Cosets 

 Let S be a subgroup of G with operation “+”. 

A left coset of S in G :  ,x S x s s S G     . 

A right coset of S in G:  ,S x s x s S G     . 

 If G is commutative, every left coset x S  is identical to every right coset S x . 

 Properties of cosets 

 A coset of S in G may not be a subgroup. In fact, only when S x S   that the 

coset is a subgroup. 

Proof. They don’t contain e. 

 The distinct cosets of a subgroup S in a group G are disjoint. 

Proof. Let    S x S y    . Then,    b S x S y     . Hence, 

b b x b y      for some ,b b S  . So, we have y b b x     . 

Now consider any c S y  . By definition, c c y   for some 

c S . Hence,  
S

c c y c b b x S x



            . Therefore, we 

have S y S x   . Similarly, we can show that S x S y   . So, 



S x S y   . Hence, we have proved that    S x S y      

S x S y   . 

 All coset of S in G have the same cardinality = S . 

Proof. Distinct elements in S give distinct elements in S x . 

 If x S , then S x S  . 

Proof. y S   y x S  . In particular, e S x e x S x      . So, 

 x S S x   . Distinct cosets are disjoint. Because 

 S S x   , they are identical. 

 A subgroup S of a group G defines a partitioning of G into distinct, disjoint 

cosets. This partitioning of G is called the coset decomposition of G induced by 

S. 

 If 2 1v v S  , then 2 1,v v  are in the same coset.  

Proof. Assume 1v S x  . Then, 1v s x   for some s S . From 2 1v v S  , 

we have s S   2 1

S

v s v s s x S x


        . 

 Lagrange’s Theorem: If S is a subgroup of G, then    ord ordS G . 

Proof. A subgroup S of a group G defines a partitioning of G into distinct, 

disjoint cosets, all with size S . Hence,  # distinct cosetsG S  . 

Ring 

 A ring is a collection of elements R with two binary operations “+” and “  ” such that 

1. R forms a commutative group under “+”.  

The additive identity element is labeled “0” 

2. The operation “  ” is associative:    a b c a b c      for all a, b, c  R. 

3. The operation “  ” distributes over “+”:      a b c a b a c      . 

A ring is said to be a commutative ring if the operation “  ” commutes (i.e., 

a b b a   ) 

A ring is said to be a ring with identity if the operation “  ” has an identity element, 

which is labeled “1”. 

A ring that is both a commutative ring and a ring with identity is said to be a 

commutative ring with identity. 

 Examples 

 Matrices with integer elements form a ring with identity under standard matrix 

addition and multiplication. 

 The integers under modulo m addition and multiplication form a commutative 

ring with identity. 



 The set of all polynomials with binary coefficients forms a commutative ring with 

identity under standard polynomial addition and multiplication. This ring is 

usually denote  2F x  or   GF 2 x . 

 Any element in a ring R that has its multiplicative inverse in R is called a unit. 

Field 

 Let F be a set of objects on which two operations “+” and “  ” are defined. F is said to 

be a field if and only if 

1. F forms a commutative group under +. The additive identity element is labeled 

“0“. 

2. F – {0} forms a commutative group under  . The multiplicative identity element 

is labeled “1”. 

3. The operation “+” and “  ” distribute:      a b c a b a c      . 

 A field can also be defined as a commutative ring with identity in which every 

element has a multiplicative inverse. 

 All of the field elements form an additive commutative group, while the nonzero 

elements form a multiplicative commutative group. 

 0 0c   

Proof.  0 0 0 0 0c c c c        . Add  0 c   to both side, then we have 

0 0 c  . 

  c e c    

Proof.      0 0 c e e c e c e c c e c              . Also, 0 c c   . 

Hence,  c e c c c     . 

 0a b   iff a = 0 or b = 0. 

Proof. “” trivial because 0 0x  .  “” Assume 0a b  , and , 0a b  . Then, 
1b , and hence, 1 10 0a a b b b       . Contradiction. 

 1 2 1 20,a b b a b a b       

Proof. If  1 2a b a b   , then multiplying both side by a
-1

 gives 1 2b b . 

 The integers {0, 1, 2, …, p-1}, where p is a prime, form the field GF(p) under modulo 

p addition and multiplication. 

 Cannot construct  GF mp  using modular arithmetic. 

Proof. 
1 0m mp p p   . 

11 mp p p   . p has no inverse. Suppose it has then 

   1 1 1 1 1 10 0m m mp p p p p p p p              . 

Vector spaces 

 Let V be a set of elements call vectors and F a field of elements called scalars.  



Two operations are introduced in addition to the two already defined between the 

field elements.  

Let “+” be a binary additive operation, henceforth called vector addition, that 

maps pairs of vectors 1 2
,v v V  onto a vector 1 2

v v v   in V.  

Let “  ” be a binary multiplicative operation, henceforth called scalar 

multiplication, that maps a scalar a F  and a vector v V  on to a vector 

w a v V   .  

V forms a vector space over F if the following conditions are satisfied: 

1. V forms a commutative group under the operation “+”. 

2. For any element a F , and v V , a v u V   . 

3. The operation “+” and “  ” distribute:  

 a u v a u a v      , and  a b v a v b v      . 

4. Associativity: For all ,a b F  and all v V ,    a b v a b v     . 

5. The multiplicative identity 1 in F acts as a multiplicative identity in scalar 

multiplication: for all v V , 1 v v  . 

 F is commonly called the “scalar field” or the “ground field” of the vector space V. 

 The n-tuple  0 1 1, , , nv v v v   of elements  iv  from the ground field F s a type of 

vectors. Such vectors allow for a convenient definition for vector addition and scalar 

multiplication. 

Let  0 1 1, , , nv v v v   and  0 1 1, , , nu u u u  , with the  iv  and  iu    F. 

vector addition:  0 0 1 1 1 1, , , n nu v u v u v u v      . 

scalar multiplication:  0 1 1, , , na v av av av   . 

 Let 1 2
, , ,

n
v v v  be vectors in V and let 1 2, , , na a a  be scalars in F. Since V forms a 

commutative group under +, the linear combination 1 21 2
, , n n

v a v a v a v      is a 

vector in V. 

 A collection of vectors  1 2
, , ,

n
G v v v , the linear combinations of which include 

all vectors in a vector space V, is said to be a spanning set for V or to span V. 

 A set of vectors is said to be linearly independent when one or more of the vectors 

can be expressed as a linear combination of the others. 

 A spanning set for V that has minimal cardinality is called a basis for V. 

 The elements of a basis must be linearly independent. 

 All bases of a vector space have the same cardinality. 

 If a basis for a vector space V has k elements, then the vector space is said to have 

dimension k, written  dim V k . 



 Let  iv  be a basis for a vector space V. For every vector v in V, there is a 

representation 0 1 10 1 1
, , k k

v a v a v a v 
     . This representation is unique. 

 Let 1
v  and 2

v  be an arbitrary pair of vectors in the subset S of the vector space V over 

F. S is a vector subspace of V if and only if any linear combination of 1
v  and 2

v  (i.e., 

1 2
a v b v   , ,a b F ) is also in S. 

Proof. “” S is a vector space hence S is closed under linear combinations. “” The 

closure properties for vector addition and scalar multiplication are satisfied for 

S. Since S is closed under scalar multiplication, all additive inverses  1 v   

for any element v S  are also in S. Then, additive identity must also be in S. 

(Use v v  for any v S ). The remainder of the vector-space properties 

follow by noting that since V is a vector space, the various properties for 

operations (Associativity and commutativity) that hold in V must also hold in 

S V . 

 Let  0 1 1, , , nu u u u   and  0 1 1, , , nv v v v   be vectors in the vector space V over 

the field F. The inner product u v  is  defined as 
1

0

n

i i

i

u v u v




   . 

 The following properties can be demonstrated: 

1. Commutativity: u v v u   . 

2. Associativity with scalar multiplication:    a u v a u v     . 

3. Distributivity with vector addition:  u v w u v u w      . 

 Let S be a k-dimensional subspace of a vector space V. Let S   be the set of all 

vectors v  in V such that for all u S  and for all v S  , 0u v  .  

S   is said to be the dual space of S. 

 The dual space S   of a vector subspace S V  is itself a vector subspace of V. 

 The Dimension Theorem: Let S be a finite-dimensional vector subspace of V and let 

S   be the corresponding dual space. Then      dim dim dimS S V  . 

 To find the dimension of the vector space C spanned by  1 2
, , ,

n
v v v , row-reduce 

1

2

n

v

v
G

v

 
 
 


 
 
  

, and count the pivot positions.    rank dim RowG G   



 Given  1 2, , , nv v v , to  solve for 
1

n

i

i

v b


 , solve 1 2 nAx v v v x b

 
 

  
 
  

, 

i.e., row reduce  : :A b I x    . 

 To find a basis (H) to the dual space of the vector space spanned by  1 2
, , ,

n
v v v , 

solve for the solution of 

1

2
0

n

v

v
x Gx

v

 
 
 

 
 
 
  

.   

Use row reduction: 

 If can get in the form  :I P , then the basis for H is the rows of :TP I   . 

 If can get into reduced echelon form, then we have free variable 
inx ’s where the 

ni corresponds to the non-pivot columns. Then we can express other xj’s as linear 

combination of free variables. Hence, 
i

i

i

n n

n

x h x . The 
inh ’s form the basis for 

H. 

Etc. from linear algebra 

 Elementary row operations 

1. Replacement: replace one row by the sum of itself and a multiple of another row 

 Add to one row a multiple of another row 

 
i i jR R mR   

j jR R  still. 

 Inverse: 
i i jR R mR   

2. Interchange: interchange 2 rows 

 
i jR R  

 Inverse: 
i jR R  

3. Scaling: multiply all entries in a row by a nonzero constant 

 i iR mR  

 Inverse: 
1

i iR R
m

  

 A rectangular matrix is in echelon form if 

1. all nonzero rows are above any rows of all zeros (or no row of zeros) 



2. each leading entry ( 0) of a row is in a column to the right of the leading entry of 

the row above it 

3. all entries in a column below a leading entry are zero 

Ex  = pivot position 

0

0 0 0 0

0 0 0 0

x x x

x x

 
 
 
 
 
 

, 

0

0 0 0

0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

x x x x x x x x

x x x x x x

x x x x x

x x

x

 
 
 
 
 
 
  

 

 A pivot position in a matrix A  a location in A that corresponds to a leading entry in 

an echelon form of A. 

 Each nonzero row has one and only one pivot position. 

 All pivot positions are in the first p rows of m nA   where p m , one pivot position 

per row. The rest of the rows are all zeros. 

 Some columns (any columns) may not have leading entry. 

 Pivot column  a column of A that contains a pivot position 

 Pivot  a nonzero number in a pivot position that is used as need to create zeros via 

row operations. 

 A rectangular matrix is in reduced echelon form if 

1. It is in echelon form 

2. The leading entry in each nonzero row is 1 

3. Each leading 1 is the only nonzero entry in its column 

Ex 

1 0

0 1

0 0 0 0

0 0 0 0

x x

x x

 
 
 
 
 
 

, 

0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

x x x x

x x x

x x x

x

x

 
 
 
 
 
 
  

 

 Row reduced = transformed by elementary row operations 

 A matrix may be row reduced into more than one matrix in echelon form, using 

different sequences of row operations 

 Uniqueness of the reduced echelon form: Each matrix is row equivalent to one and 

only one reduced echelon matrix 

 The row reduction algorithm 

 Forward phrase 

1. Begin with the leftmost nonzero column.  This is a pivot column. The pivot 

position is at the top. (Left of this is zeros) 

2. Select a nonzero entry in the pivot column as a pivot. If necessary, 

interchange rows to move this entry into the pivot position. 



3. Use row replacement operations to create zeros in all position below the pivot. 

4. Cover (or ignore) the row containing the pivot position and cover all rows, if 

any, above it. 

Apply steps 1-3 to the submatrix that remains. 

Repeat the process until there are no more nonzero rows to modify. 

We have reached an echelon form 

 Backward phrase 

to get the reduced echelon form 

5. Beginning with the rightmost pivot, and working upward and to the left, create 

zeros above each pivot. 

If a pivot is not 1, make it 1 by scaling operation 

 Free variables ; basic variables 

For Ax b A b      echelon form 

 Basic variable  variable xi where i corresponds to a pivot column in the matrix 

 Free variable  other variable  variable xi ; column i is not a pivot column  

free to choose any value 

 Parametric description of solution sets in which the free variables act as parameters 

General solution: 

 
1 2

1

1 , ,

 is free

free free

free

x f x x

x

 







 

 Using row reduction to solve a linear system 

1. Write the augmented matrix of the system 

2. Use the row reduction algorithm to obtain an equivalent augmented matrix in 

echelon form. 

Decide whether the system is inconsistent. 

If there is no solution, stop. 

Otherwise, go to the next step. 

3. Continue row reduction to obtain the reduced echelon form. 

4. Write the system of equations corresponding to the matrix obtained in step 3. 

5. Rewrite each nonzero equation form step 4 so that its one basic variable is 

expressed in terms of any free variables appearing in the equation. 

 


